Subscribe:

Seguidores

sábado, 11 de febrero de 2012

Memorias LIFO Y FIFO


 MEMORIA LIFO Y FIFO

Las memorias LIFO y FIFO son memorias especiales del tipo tampón cuyo nombre proviene de la forma de almacenar y extraer la información de su interior.

LIFO (Last in-first out), la última información introducida en la memoria es la primera en extraerse, es lo que se llama una pila o apilamiento.

Estas memorias especiales se crearon para librar a la CPU de gran parte de la labor de supervisión y control al realizar algunas operaciones del tipo de manipulación de datos memorizándolos y extrayéndolos a una secuencia establecida.Las memorias LIFO, no tienen porque ser memorias especiales ajenas a la memoria central del sistema, algunos micro procesadores (UP), suelen incorporar un registro denominado Stock Pointer (puntero de pila), que facilita al UP la posibilidad de construir pila (stock) sobre una zona de memoria RAM, el direccionamiento de la pila lo lleva a cabo el registro Stock Pointer actuando sobre la zona de memoria RAM destinada a tal efecto.


FIFO (First in-firts out), primero en entrar - primero en salir, es decir, es lo que se llama una fila de espera. No son de acceso aleatorio, es escasa su incidencia en sistemas de microordenadores.

FIFO se utiliza en estructuras de datos para implementar colas. La implementación puede efectuarse con ayuda de arrays o vectores, o bien mediante el uso de punteros y asignación dinámica de memoria.

Jumper

Jumper
Un jumper es un elemento conductor usado para conectar dos terminales para cerrar un circuito eléctrico. Los jumpers son generalmente usados para configurar o ajustar circuitos impresos, como en las placas madres de las computadoras.

Los jumpers permiten configurar el hardware o dispositivos electrónicos. Un uso muy común es en la configuración de discos duros y lectoras de CD y DVD del tipo IDE. Los jumpers permiten escoger entre distintas configuraciones ya sea maestro, esclavo o cable selecto al cambiar su posición. Actualmente en los dispositivos ATA no se utilizan más los jumpers.

Actualmente se conocen varios tipos de jumpers, entre los cuales se encuentran: Jx8, Jx9, Jx12, Jx13. Dependiendo del sitio en el que este sobre la tarjeta madre.

memoria flash y cache

Memoria flash
La memoria electrónica viene en una gran variedad de formas para servir una variedad de propósitos. La memoria flash se usa para un rápido y fácil almacenamiento de información en dispositivos como las cámaras digitales y las consolas de video. También se usa para ciertos equipos de red como routers, switches, etc. Se usa más como un disco duro que como una memoria RAM. De hecho, la memoria flash se considera un elemento sólido de almacenar datos. Sólido significa que no hay partes que se muevan – todo es electrónica en lugar de mecánico.


Memoria cache







Memoria cache interna
Es una innovación relativamente reciente; en realidad son dos, cada una con una misión específica: Una para datos y otra para instrucciones.  Están incluidas en el procesador junto con su circuitería de control, lo que significa tres cosas: comparativamente es muy cara; extremadamente rápida, y limitada en tamaño, en cada una de las cachés internas, los 386 tenían 8 KB; el 486 DX4 16 KB, y los primeros Pentium 8 KB.  Como puede suponerse, su velocidad de acceso es comparable a la de los registros, es decir, centenares de veces más rápida que la RAM.
Memoria cache externa

Es más antigua que la interna, dado que hasta fecha relativamente reciente estas últimas eran impracticables.   Es una memoria de acceso rápido incluida en la placa base, que dispone de su propio bus y controlador independiente que intercepta las llamadas a memoria antes que sean enviadas a la RAM.
La caché externa típica es un banco SRAM  de entre 128 y 256 KB. Esta memoria es considerablemente más rápida que la DRAM convencional, aunque también mucho más cara teniendo en cuenta que un aumento de tamaño sobre los valores anteriores no incrementa proporcionalmente la eficacia de la memoria caché.  Actualmente la tendencia es incluir esta caché en el procesador.  Los tamaños típicos oscilan entre 256 KB y 1 MB. 

viernes, 10 de febrero de 2012

Dispositivos


Su funcionamiento principal depende de la tecnología que utilice para capturar el movimiento al ser desplazado sobre una superficie plana oalfombrilla de ratón especial para ratón, y transmitir esta información para mover una flecha o puntero sobre el monitor de la computadora. Dependiendo de las tecnologías empleadas en el sensor del movimiento o por su mecanismo y del método de comunicación entre éste y la computadora, existen multitud de tipos o familias.
El objetivo principal o más habitual es seleccionar distintas opciones que pueden aparecer en la pantalla, con uno o dos clic, pulsaciones, en algún botón o botones. Para su manejo el usuario debe acostumbrarse tanto a desplazar el puntero como a pulsar con uno o dos clics para la mayoría de las tareas.
Con el avance de las nuevas computadoras, el ratón se ha convertido en un dispositivo esencial a la hora de jugar, destacando no solo para seleccionar y accionar objetos en pantalla en juegos estratégicos, sino para cambiar la dirección de la cámara o la dirección de un personaje en juegos de primera o tercera persona. Comúnmente en la mayoría de estos juegos, los botones del ratón se utilizan para accionar las armas u objetos seleccionados y la rueda del ratón sirve para recorrer los objetos o armas de nuestro inventario.

[editar]

ásicamente el teclado de un ordenador se comporta como una máquina de escribir. Son muchas las teclas cuya función es la misma que en las máquinas de escribir, como la tecla 4 (Shift o Mayúsculas). Sin embargo, hay un buen número de teclas que tienen funciones propias sólo de ordenadores. Por otro lado, ciertas teclas sólo funcionan cuando se presionan simultaneamente con otras (combinación de teclas). Por ejemplo, la tecla 4 (Shift o Mayúsculas) se mantiene presionada para pulsar otra, como en la máquinas de escribir. Cada aplicación puede asociar determinadas combinaciones con funciones concretas de esa aplicación, aunque hay ciertas combinaciones de teclas que prácticamente son comunes a casi todas las aplicaciones cuyo uso es muy frecuentes y conocido: combinaciones usuales de teclas. También hay que tener en cuenta que se pueden combinar ciertas teclas con acciones de ratón para realizar acciones muy concretas. Por ejemplo, si se mantiene presionada la tecla 5 (Ctrl) y se realizadoble clic sobre una palabra, ésta queda seleccionada. Otras teclas funcionan como conmutadores, es decir, cuando se pulsa se activa y si se vuelve a pulsar se desactiva. Por ejemplo, la tecla 3 (Bloq Mayús) se activa para obtener todas mayúsculas y se desactiva para obtener minúsculas. Otras son propias del idioma como la Ñ y los acentos. En este artículo exponemos algunas nociones sobre teclados para el usuario que se enfrenta por primera vez al ordenador.



Microfonos:

El micrófono es un transductor electroacústico. Su función es la de traducir las vibraciones debidas a la presión acústica ejercida sobre su cápsula por las ondas sonoras en energía eléctrica, lo que permite por ejemplo grabar sonidos de cualquier lugar o elemento.


La cámara de vídeo o videocámara es un dispositivo que captura imágenes convirtiéndolas en señales eléctricas, en la mayoría de los casos a señal de vídeo, también conocida como señal de televisión. En otras palabras, una cámara de vídeo es un transductor óptico.

Las cámaras web normalmente están formadas por una lente, un sensor de imagen y la circuitería necesaria para manejarlos.
Existen distintos tipos de lentes, siendo las lentes plásticas las más comunes. Los sensores de imagen pueden ser CCD (charge coupled device) o CMOS (complementary metal oxide semiconductor). Este último suele ser el habitual en cámaras de bajo coste, aunque eso no signifique necesariamente que cualquier cámara CCD sea mejor que cualquiera CMOS. Las cámaras web para usuarios medios suelen ofrecer una resolución VGA (640x480) con una tasa de unos 30 fotogramas por segundo, si bien en la actualidad están ofreciendo resoluciones medias de 1 a 1,3 MP.

Escáneres planos:

son los más accesibles y usados, pues son veloces, fáciles de manejar, producen imágenes digitalizadas de calidad aceptable (sobre todo si están destinadas a la web) y son bastante baratos, pudiéndose adquirir uno de calidad media por menos de 120 €.
La mayor desventaja de estos escáneres es la limitación respecto al tamaño del documento a escanear, que queda limitado a los formatos DIN-A5 o DIN-A4.

También llamados escáneres de sobremesa, están formados por una superficie plana de vidrio sobre la que se sitúa el documento a escanear, generalmente opaco, bajo la cual un brazo se desplaza a lo largo del área de captura. Montados en este brazo móvil se encuentran la fuente de luz y el fotosensor de luz (por lo general un CCD).
Conforme va desplazándose el brazo, la fuente de luz baña la cara interna del documento, recogiendo el sensor los rayos reflejados, que son enviados al software de conversión analógico/digital para su transformación en una imagen de mapa de bits, creada mediante la información de color recogida para cada píxel.
La mayoría de estos escáneres pueden trabajar en escala de grises (256 tonos de gris) y a color (24 y 32 bits) y por lo general tienen un área de lectura de dimensiones 22 x 28 cm. y una resolución real de escaneado de entre 300 y 2400 ppp, aunque mediante interpolación pueden conseguir resoluciones de hasta 19200 ppp.


También llamados escáneres de sobremesa, están formados por una superficie plana de vidrio sobre la que se sitúa el documento a escanear, generalmente opaco, bajo la cual un brazo se desplaza a lo largo del área de captura. Montados en este brazo móvil se encuentran la fuente de luz y el fotosensor de luz (por lo general un CCD).
Conforme va desplazándose el brazo, la fuente de luz baña la cara interna del documento, recogiendo el sensor los rayos reflejados, que son enviados al software de conversión analógico/digital para su transformación en una imagen de mapa de bits, creada mediante la información de color recogida para cada píxel.
La mayoría de estos escáneres pueden trabajar en escala de grises (256 tonos de gris) y a color (24 y 32 bits) y por lo general tienen un área de lectura de dimensiones 22 x 28 cm. y una resolución real de escaneado de entre 300 y 2400 ppp, aunque mediante interpolación pueden conseguir resoluciones de hasta 19200 ppp.

Tarjetas graficas

Tarjeta gráfica nVIDIA NV43 AGP (Geforce 6600GT) con disipación del calor por ventilador

Características

  • Procesador Gráfico: El encargado de hacer los cálculos y las figuras, debe tener potencia para que actúe más rápido y de mejor rendimiento.
  • Disipador: Muy importante para no quemar el procesador, ya que es necesario un buen sistema de disipación del calor. Sin un buen disipador el procesador gráfico no aguantaría las altas temperaturas y perdería rendimiento incluso llegando a quemarse.
  • Memoria de video: La memoria de video, es lo que almacena la información de lo que se visualiza en la pantalla. Depende de la resolución que queramos utilizar y de la cantidad de colores que deseemos presentar en pantalla, a mayor resolución y mayor número de colores más memoria es necesaria.







tarjetas graficas

ATi Catalyst Drivers es fundamentalmente una recopilación de drivers unificados en una sola aplicación para todas las tarjetas ATi Radeon.

Con ATi Catalyst Drivers podrás optimizar el funcionamiento de las tarjetas ATi Radeon, y aumentar su rendimiento, su estabilidad y en general todas sus prestaciones. En definitiva, una recopilación que es obligatorio tener si nuestra tarjeta gráfica es ATi.
Si tienes algún problema con algún driver actual de tu tarjeta gráfica,ATi Catalyst Drivers puede sacarte de un buen apuro. Y si sencillamente quieres mejorar las prestaciones de tu tarjeta ATí, este 

Tipos de ranuras

Tipos de ranuras

[editar]
XT

Es una de las ranuras más antiguas y trabaja con una velocidad muy inferior a las ranuras modernas (8 bits) y a una frecuencia de 4,77 megahercios, ya que garantiza que los PC estén bien ubicados para su mejor funcionamiento; necesita ser revisados antes.

[editar]
ISA

Tres ranuras ISA.
Artículo principal: Industry Standard Architecture
La ranura ISA es una ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 megahercios. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales. Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI.

[editar]
VESA

En 1992 el comité VESA de la empresa NEC crea esta ranura para dar soporte a las nuevas placas de video. Es fácilmente identificable en la placa base debido a que consiste de un ISA con una extensión color marrón, trabaja a 32 bits y con una frecuencia que varia desde 33 a 40 megahercios. Tiene 22,3 centímetros de largo (ISA más la extensión) 1,4 de alto, 0,9 de ancho (ISA) y 0,8 de ancho (extensión).

[editar]
PCI

Buses PCI de una placa base paraPentium I.
Artículo principal: Peripheral Component Interconnect
Peripheral Component Interconnect o PCI es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en las computadoras personales, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite la configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpersexternos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaban tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología plug and play. Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.

[editar]
Variantes convencionales de PCI

  • Cardbus es un formato PCMCIA de 32 bits, 33 MHz PCI.
  • Compact PCI, utiliza módulos de tamaño Eurocard conectado en una placa hija PCI.
  • PCI 2.2 funciona a 66 MHz (requiere 3.3 voltios en las señales) (índice de transferencia máximo de 503 MiB/s (533MB/s)
  • PCI 2.3 permite el uso de 3.3 voltios y señalizador universal, pero no soporta los 5 voltios en las tarjetas.
  • PCI 3.0 es el estándar final oficial del bus, con el soporte de 5 voltios completamente eliminado.
  • PCI-X cambia el protocolo levemente y aumenta la transferencia de datos a 133 MHz (índice de transferencia máximo de 1014 MiB/s).
  • PCI-X 2.0 especifica un ratio de 266 MHz (índice de transferencia máximo de 2035 MiB/s) y también de 533 MHz, expande el espacio de configuración a 4096 bytes, añade una variante de bus de 16 bits y utiliza señales de 1.5 voltios.
  • Mini PCI es un nuevo formato de PCI 2.2 para utilizarlo internamente en los portátiles.
  • PC/104-Plus es un bus industrial que utiliza las señales PCI con diferentes conectores.
  • Advanced Telecommunications Computing Architecture (ATCA o AdvancedTCA) es la siguiente generación de buses para la industria de las telecomunicaciones.

[editar]
Audio/módem rise

Ranura audio/módem rise (izquierda) junto a una ranura PCI (derecha).
Artículo principal: Audio/modem riser
El audio/modem rise o AMR es una ranura de expansión en la placa madre para dispositivos de audio (como tarjetas de sonido) o módems lanzada en 1998 y presente en placas de Intel Pentium IIIIntel Pentium IV y AMD Athlon. Fue diseñada por Intel como una interfaz con los diversos chipsets para proporcionar funcionalidad analógica de entrada/salida permitiendo que esos componentes fueran reutilizados en placas posteriores sin tener que pasar por un nuevo proceso de certificación de la Comisión Federal de Comunicaciones (con los costes en tiempo y económicos que conlleva).
Cuenta con 2x23 pines divididos en dos bloques, uno de 11 (el más cercano al borde de la placa madre) y otro de 12, con lo que es físicamente imposible una inserción errónea, y suele aparecer en lugar de una ranura PCI, aunque a diferencia de este no es plug and play y no admite tarjetas aceleradas por hardware (sólo por software).
En un principio se diseñó como ranura de expansión para dispositivos económicos de audio o comunicaciones ya que estos harían uso de los recursos de la máquina como el microprocesador y la memoria RAM. Esto tuvo poco éxito ya que fue lanzado en un momento en que la potencia de las máquinas no era la adecuada para soportar esta carga y el mal o escaso soporte de los drivers para estos dispositivos en sistemas operativos que no fuesen Windows.
Tecnológicamente ha sido superado por las tecnologías Advanced Communications Riser (de VIA y AMD) y Communication and Networking Riser de Intel. Pero en general todas las tecnologías en placas hijas (riser card) como ACR, AMR, y CNR, están hoy obsoletas en favor de los componentes embebidos y los dispositivos USB.

[editar]
Comunication and Networking Riser

Communication and Networking Riser, o CNR, es una ranura de expansión en la placa base para dispositivos de comunicaciones como módems otarjetas de red. Un poco más grande que la ranura audio/módem rise, CNR fue introducida en febrero de 2000 por Intel en sus placas madre para procesadores Pentium y se trataba de un diseño propietario por lo que no se extendió más allá de las placas que incluían los chipsets de Intel, que más tarde fue implementada en placas madre con otros chipset.

[editar]
PCI-Express

Ranura PCI-Express 1x.
Artículo principal: PCI-Express
PCI-Express, abreviado como PCI-E o PCIE, aunque erróneamente se le suele abreviar como PCIX o PCI-X. Sin embargo, PCI-Express no tiene nada que ver con PCI-X que es una evolución de PCI, en la que se consigue aumentar el ancho de banda mediante el incremento de la frecuencia, llegando a ser 32 veces más rápido que el PCI 2.1. Su velocidad es mayor que PCI-Express, pero presenta el inconveniente de que al instalar más de un dispositivo la frecuencia base se reduce y pierde velocidad de transmisión.
Este bus está estructurado como enlaces punto a punto,full-duplex, trabajando en serie. En PCIE 1.1 (el más común en 2007) cada enlace transporta 250 MB/s en cada dirección. PCIE 2.0 dobla esta tasa y PCIE 3.0 la dobla de nuevo.
Cada slot de expansión lleva uno, dos, cuatro, ocho, dieciséis o treinta y dos enlaces de datos entre la placa base y las tarjetas conectadas. El número de enlaces se escribe con una x de prefijo (x1 para un enlace simple y x16 para una tarjeta con dieciséis enlaces. Treinta y dos enlaces de 250MB/s dan el máximo ancho de banda, 8 GB/s (250 MB/s x 32) en cada dirección para PCIE 1.1. En el uso más común (x16) proporcionan un ancho de banda de 4 GB/s (250 MB/s x 16) en cada dirección. En comparación con otros buses, un enlace simple es aproximadamente el doble de rápido que el PCI normal; un slot de cuatro enlaces, tiene un ancho de banda comparable a la versión más rápida de PCI-X 1.0, y ocho enlaces tienen un ancho de banda comparable a la versión más rápida de AGP.
Slots PCI Express (de arriba a abajo: x4, x16, x1 y x16), comparado con uno tradicional PCI de 32 bits, tal como se ven en la placa DFI LanParty nF4 Ultra-D.
Está pensado para ser usado sólo como bus local, aunque existen extensores capaces de conectar múltiples placas base mediante cables de cobre o incluso fibra óptica. Debido a que se basa en el bus PCI, las tarjetas actuales pueden ser reconvertidas a PCI-Express cambiando solamente la capa física. La velocidad superior del PCI-Express permitirá reemplazar casi todos los demás buses, AGP y PCI incluidos. La idea de Intel es tener un solo controlador PCI-Express comunicándose con todos los dispositivos, en vez de con el actual sistema de puente norte y puente sur. Este conector es usado mayormente para conectar tarjetas gráficas.
No es todavía suficientemente rápido para ser usado como bus de memoria. Esto es una desventaja que no tiene el sistema similarHyperTransport, que también puede tener este uso. Además no ofrece la flexibilidad del sistema InfiniBand, que tiene rendimiento similar, y además puede ser usado como bus interno externo.
En 2006 es percibido como un estándar de las placas base para PC, especialmente en tarjetas gráficas. Marcas como ATI TechnologiesnVIDIA entre otras tienen tarjetas gráficas en PCI-Express